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Povzetek – Težave s stabilnostjo so inherentne za elektroenergetske sisteme zaradi njihove nelinearne in 

dinamične narave. Izzivi stabilnosti za majhne motnje, ki so predmet tega prispevka, so opazni, kadar en ali več 

sinhronskih generatorjev niha drug z drugim. Slabo dušena nihanja lahko brez ustreznih protiukrepov vodijo do 

nestabilnosti sistema, kar se lahko konča z njegovim razpadom. Modalna analiza se je sicer izkazala kot ustrezen 

pristop za preučevanje slabo dušenih nihanj s simulacijami na računalniških modelih. Po drugi strani lahko 

stabilnost sistema ocenimo v realnem času s pomočjo meritev kazalcev električnih veličin. Pri obratovanju 

realnega sistema pa zaenkrat tudi v najbolj optimističnih razmerah ne moremo pričakovati tolikšnega vpogleda v 

obratovalno stanje sistema kot je mogoč z modalno analizo na računalniških modelih. V prispevku je opisana 

metoda, ki omogoča povezavo med oceno stabilnost s sprotnimi meritvami in rezultati računalniškega modela z 

uporabo analize glavnih komponent. Metoda je preizkušena s pomočjo orodja DigSILENT Power Factory, in sicer 

na 39 vozliščnem modelu. Na osnovi modela je bila sestavljena podatkovna baza tako z rezultati modalne analize 

kot tudi z meritvami nihanj iz časovnih potekov merjenih veličin. Obdelava podatkov je izvedena v programskem 

okolju Matlab.  

 

Ključne besede: stabilnost za majhne motnje, analiza glavnih komponent, spektralna analiza, nihanja, Power 

Factory, modalna analiza, spoznavnost načina 

 

 

 

 

Real-time identification of oscilatory characteristics of power systems 
 

Abstract – Stability problems are inherent to power systems due to their non-linear and dynamic nature. The 

stability challenges for small disturbances, which are the subject of this paper, are noticeable when one or more 

synchronous generators oscillate relative to each other. Poorly damped oscillations, without adequate 

countermeasures, can lead to instability of the system, which can lead to its collapse. Modal analysis proved to be 

a suitable approach for the study of poorly damped oscillations with simulations on computer models. A different 

approach is implemented in real-time, made possible by utilizing phasor measurements of electrical quantities. 

However, when operating a real system, even under the most optimistic conditions, we cannot expect as much 

insight into the operating state of the system as it is possible with modal analysis on computer models. This paper 

describes a method that allows the connection between real-time measurements and the modal analysis results of 

a computer model using principal component analysis. The method is tested using the DigSILENT Power Factory 

software on a 39-node model. Based on the model, a database was compiled with the results of the modal analysis 

as well as with the timely fluctuations of the measured quantities. The data processing is performed in the Matlab 

software environment.  

 

Keywords: small-signal stability, principal components analysis, spectral analysis, Power Factory, power system 

oscillations, modal analysis, mode shape 

mailto:jovica.perevski@ait.ac.at
mailto:urban.rudez@fe.uni-lj.si


16. KONFERENCA SLOVENSKIH ELEKTROENERGETIKOV – Bled 2023 
16th Conference of Slovenian Electrical Power Engineers 

CIGRE ŠK C2-164 

 

 

2 

 

1 INTRODUCTION 

In recent years, power systems have been subjected to many novelties in their operation. Emerging technologies 

in the areas of renewable energy sources, power electronic devices, distributed generation etc. have made a 

substantial impact on power systems. For example, the highly variable output power of most renewable energy 

sources can have a considerable effect on the dynamic behavior of power systems, leading to power swings and 

less synchronizing coupling [1]. It is safe to say that the issue at hand causes significant problems in the secure 

and reliable operation of the power system i.e., its ability to withstand disturbances. The terms secure and reliable 

can refer to many aspects in the operation, all of which can be eventually linked to the stability of power systems. 

From the many different types of stability, in this paper, we direct our focus to small signal stability, or the system’s 

ability to maintain synchronism under small disturbances [2]. 

 

The most utilized tool for assessing small-signal stability is modal analysis [3]. The method is of mathematical 

nature and utilizes the linearization of the differential equations representing the system and solving for its 

eigenvalues and eigenvectors. This provides the information about the small signal dynamics of the system. Each 

eigenvalue contains the information on the frequency and damping of the oscillations that appear in the system 

(so-called mode). For each eigenvalue, we have the left and right eigenvector. The latter is usually referred to as 

mode shape and shows the activity of each generator in that specific mode. The problem with modal analysis is 

that it deals with a mathematical model of a particular operating scenario of the system, thus it is unable to assess 

the small signal dynamics of real-time, evolving systems, whose exact operating characteristics can hardly be 

considered as known. 

 

An “improvement” on modal analysis came with real-time measurements, made possible by the introduction of 

Phasor Measuring Units (PMUs) in power systems. The first methods concentrated on estimating the frequency 

and damping of oscillations, while later, mode shape estimation methods became a useful reality. Assessing the 

mode shape has the potential to aid in the mitigation of power system oscillations by providing information for 

taking adequate control actions [4].  

 

With the frequency, damping and mode shape, we already have a good idea of what is happening in the power 

system in the terms of its stability. In this paper, our aim is to further improve our knowledge about the stability 

in our system by recognition of modes with similar mode shapes in our database made of modal analysis results. 

We make that possible utilizing Principal Components Analysis on our database, which in turn reduces its 

dimensionality and provides means for comparing mode shapes and visualizing modes through their mode shapes. 

Firstly, let us provide some theoretical background on the meaning of small signal stability and modal analysis as 

the prime assessor of small signal stability. 

2 SMALL SIGNAL STABILITY 

As mentioned in the introduction, small signal stability refers to the power system’s ability to stay in synchronism 

when subjected to small disturbances. Further definitions and categorizations of power systems stability can be 

found in [5]. The disturbance is considered small if we can linearize the differential equations defining the system 

for the purpose of our analysis. For example, let us consider the movement of the rotor of the synchronous 

generator according to the swing equation: 

 

 2 ∙ 𝐻

𝜔0

∙
𝑑2𝜃

𝑑𝑡2
+ 𝐷 ∙

𝑑𝜃

𝑑𝑡
= 𝑃𝑚 − 𝑃𝑒(𝜃) (1) 

 

where, 𝜔0 is the nominal angular frequency, 𝐻 is the constant of inertia of the generator, 𝐷 is the damping constant 

of the generator, 𝜃 is the rotor angle, 𝑃𝑚 is the mechanical power of the turbine driving the shaft and 𝑃𝑒(𝜃) is the 

electrical power of the generator, as a function of the rotor angle. 

 

During stable operation, the mechanical power of the turbine 𝑃𝑚 is equal to the electrical power that is fed into the 

grid 𝑃𝑒, thus the generator is in equilibrium, and 𝜃 is held constant. When a small disturbance happens in the grid, 

the rotor angle of the generator deviates from its initial position by ∆𝜃 and takes the value of, for example 𝜃1, as 

shown in Figure 1-a. 𝑃𝑒(𝜃) now takes the value of 𝑃e(𝜃1), while 𝑃𝑚 stays the same, making the right-hand side of 
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the equation not equal to zero. Solving (1) for the rotor angle with consideration of the inequality on the right-hand 

side, one would yield a solution for the rotor angle in the form of:  

 

 𝜃(𝑡) = 𝜃0 + 𝐾 ⋅ 𝑒𝜎⋅𝑡 ⋅ cos(𝜔𝑛 ⋅ 𝑡) (2) 

 

In (2), 𝐾 is determined by the severity of the disturbance, 𝜎 is the absolute damping and 𝜔𝑛 is the natural (damped) 

angular frequency of the oscillations of the rotor angle. Figure 1-b, shows the time response of the rotor angle 𝜃 

during a small disturbance, which is an oscillation around the values 𝜃1 and 𝜃2(no damping).  

 
Figure 1. Oscillations of the rotor angle 

 

During a disturbance like this, the movement of the rotor is a consequence of a resulting electromagnetic torque 

which can be separated into two components as follows [6]:  

• synchronizing torque, which is in phase with the rotor angle deviation, and 

• damping torque, which is in phase with the rotor speed deviation. 

 

The idea behind small signal stability is that, during a disturbance, the generator has enough synchronizing and 

damping torque so that the oscillations quickly dissipate and therefore cannot be a cause for further worsening of 

system stability. 

2.1. Modal analysis 

In real power systems, the problem is much more complicated as opposed to when dealing with just one generator. 

One or many different generators tend to swing together or relative to each other, making the calculations like the 

previous practically impossible. The time response is almost never as simple as shown in Figure 1. Usually, the 

form of the oscillogram is a sum of multiple sine wave oscillations, each with their own damping and frequency. 

The key feature of modal analysis is to find all those oscillations (modes) in the system and quantify their presence 

in each of the generators. Modal analysis assumes the linearized dynamical system with zero input: 

 

 �̇� = 𝐴 ⋅ 𝑥 (3) 

 

The solution of such system in the Laplace domain is nicely conveyed in [7] and is represented by: 

 

 
𝑥(𝑠) = ∑

𝒒𝒋
𝑻 ⋅ 𝑥(0)

𝑠 − 𝜆𝑗

𝑛

𝑗=1

⋅ 𝒑𝒋 (4) 

 

Equation (4) shows that the response of the system, in the case of a small disturbance, depends on the initial 

conditions 𝑥(0), 𝒒𝒋
𝑻, 𝒑𝒋, and 𝜆𝑗. The values 𝜆𝑗 are eigenvalues (in the form of 𝜎𝑗 ± 𝑗 ⋅ 𝜔𝑗) of the state matrix 𝐴𝑛𝑥𝑛, 

while 𝒒𝒋
𝑻 and 𝒑𝒋, are the left and right eigenvector of the adequate eigenvalue, respectively. It is important to note 

that 𝒒𝒋
𝑻 is a row vector, 𝑥(0) is a column vector and 𝒑𝒋 is a column vector, all with 𝑛 values. This eventually means 

that the information of how much a certain generator 𝐺𝑖 oscillates at the mode 𝜆𝑗 i.e. with damping 𝜎𝑗 and frequency 

𝜔𝑗, depends on the corresponding value 𝒑𝒊𝒋 in 𝒑𝒋. The eigenvector 𝒑𝒋 is called the mode shape for the eigenvalue 
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𝜆𝑗 and gives insights into the activity of each state variable in 𝑥 for that mode 𝜆𝑗. Often, the values in 𝒑𝒋 are of 

complex nature with a given magnitude and phase. Figure 2-a shows the time response of the rotor angle of three 

generators during a small disturbance which excites an oscillation of 0.637 Hz. Figure 2-b shows the mode shape 

of that time response where we can distinguish between the magnitude and the relative phase shift i.e. the 

oscillation of G1 against G2 and G3.  
 

3 MODE SHAPE ESTIMATION AND RECOGNITION 

3.1. Mode shape estimation 

For the purpose of this paper, we rely on the assessment of the mode shape of oscillation from the ambient response 

of the system. The ambient response is the product of small disturbances which excite certain modes in the system, 

thus we research on the reverse possibility of obtaining the mode shape/mode of the oscillation through ambient 

measurements. Many different methods have been developed for that purpose; we refer to the findings in [4] for a 

detailed comparison of available methods. In this paper, we estimate the mode shape from ambient measurements 

utilizing the power spectral density and cross power spectral density method, conveyed in [8]. The method 

calculates the powers 𝑺(𝜔) of ambient measurements (𝑺 is a column vector), at each frequency and relates it to 

the square of the mode shape at that given frequency 𝒑𝟐. Understandably, the frequencies at which exact modes of 

oscillations appear, would have much higher power than a random selected frequency, thus the relation develops 

into: 
 

 𝑺(𝜔𝑗)  ~  𝒑𝒋
𝟐 (5) 

 

At the end, we just scale the values of the mode shape so that the eigenvector has unity length. For the angle of the 

mode shape, we calculate the cross-power spectral density of all measurements in relation to the one with the 

highest relative mode shape magnitude obtained in the previous step. Suppose the 𝑘-th element of 𝒑𝒋 has the 

highest value for the mode shape magnitude, then the relative angle of the mode shape of the measurement 𝑚, 

would be: 

 

 ⦨𝒑𝒎𝒋 = ⦨𝑺𝒌𝒎(𝜔𝑗) (6) 

 

With this step we have calculated the mode shape i.e. its magnitude and phase, from the ambient measurements of 

our power system. This was the prerequisite for continuing to the next step which is the recognition of the mode 

shape in the database. 

3.2. Mode shape recognition 

The recognition of the estimated mode shape and its comparison with a similar mode shape in the database is done 

using principal components. Principal Component Analysis, or PCA, is a statistical technique used to reduce the 

dimensionality of large datasets by identifying the most important patterns and relationships in the data. It does 

this by identifying the principal components of the data, which are the directions that explain the most variation, 

Figure 2. Mode shape of a 0.637 Hz oscillation for three generators 
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and projecting the data onto these components to create a lower-dimensional representation of that same data. 

Reference [9] and [10] provide insights into data driven trends in power engineering and engineering in general.  

 

Given a dataset 𝑿 with 𝑛 observations and 𝑝 features, we can represent it as an 𝑛 by 𝑝 matrix 𝑿, where each row 

represents an observation, and each column represents a feature. The goal of PCA is to find a lower-dimensional 

representation of 𝑿 that captures the most important patterns and relationships in the data. This is done by finding 

the principal components of 𝑿, which are the directions that explain the most variation in the data. The first 

principal component can be found by finding the eigenvector of the covariance matrix of 𝑿 that corresponds to 

the largest eigenvalue. Subsequent principal components can be found by finding the eigenvectors corresponding 

to the next largest eigenvalues. Once the principal components have been identified, 𝑿 can be projected onto these 

components to create a lower-dimensional representation of the data. This can be done by multiplying 𝑿 by the 

matrix of principal components 𝑾. The resulting matrix will have the same number of observations as 𝑿, but only 

as many columns as there are principal components. Equation (7) represents the transformation from the “regular” 

to the principal components space of the data (from 1000 to only 3 features), also represented in Figure 3. We now 

can compare the observations with each other using only the 3 features provided with the PCA. 

 

 𝑷𝑪𝒏𝒙𝟑 = 𝑿𝒏𝒙𝟏𝟎𝟎𝟎 ⋅ 𝑾𝟏𝟎𝟎𝟎𝒙𝟑 (7) 

 

 
Figure 3. Regular and PC space 

4 SIMULATION RESULTS 

There are several steps to our concept of identifying the oscillatory characteristics of power systems. These can be 

divided as follows: 

1. database creation and PCA, 

2. mode shape estimation from ambient measurements, and 

3. mode shape recognition in database. 

The validity of the proposed method is tested on the New England 39 bus test system shown in Figure 4. The 

simulations were performed in the PowerFactory simulation software.  

 

 
Figure 4. New England 39 bus test system (data can be found in [11]) 
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Firstly, we created our database of five different scenarios of the test system with the idea of obtaining variations 

in the modal analysis data (difficult with a small system). The scenarios are obtained by changing generator output, 

changing the topology of the grid and/or the power of the loads. The database is constructed using the mode shapes 

of the rotor angles of the generators for each calculated mode which has a damping range up to 10%, from each 

scenario. The values in the mode shape vector are presented in Figure 5 with their cartesian coordinates. Each row 

in the database presents a mode, while the columns are the real and imaginary values of the mode shape for that 

mode. After preparing the dataset of mode shapes, the PCA algorithm is applied using the inbuild function pca in 

Matlab.  

 

 
Figure 5. Database created with the cartesian coordinates of the mode shapes 

 

Secondly, we needed ambient measurements from which we can estimate the mode shape of the eventual 

oscillations which appear in the system. Because, to our knowledge, there is no such tool provided with Power 

Factory, the ambient simulations were created using random small disturbances in the grid. More precisely, we 

created a random load change (random consumer and random range from -10% to 10%) at each 3 second interval, 

with the idea that such small disturbances would excite the electromechanical modes in the system. We then 

observed the relative (in relation to the reference rotor angle) rotor angles of each generator for a simulation lasting 

10 minutes and obtained the graph in Figure 6. 

 

 
Figure 6. Measured rotor angles for the duration of the simulation 

 

The measurements show how the disturbances introduced in our grid excite a response of the rotor angles. For 

real-life implementation, we would have to take other measurable quantities like bus frequency, voltage angle etc. 

having in mind that rotor angles cannot be measured. Understandably, that would mean that the values in the 

database (the mode shapes) should be for those measured quantities. From those measurements, we can estimate 

the mode shape using the power spectral density and cross power spectral density as conveyed in section 3.1. The 

estimation can be done automatically, or in our case, manually by selecting the frequency at which there is an 

expressed power range in the spectral analysis as shown in Figure 7. The power spectral density and cross power 

spectral density for the measured rotor angles are calculated using the pwelch and cpsd functions in Matlab. Here, 

we can mention that the method which estimates the mode shape is irrelevant for the whole concept i.e. the 

estimation and the recognition parts of the concept are separate and not dependent on each other. That means that 

we can use any other method for mode shape estimation and still yield satisfactory results. Efforts are underway 

to compare the results of using a different mode shape estimation algorithm, more precisely the frequency domain 

decomposition method conveyed in [12]. 
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Figure 7. Power spectral density of rotor angle measurements (one selected frequency) 

 

The third step is to recognize the most similar modes in our database i.e. find a mode shape/mode shapes with 

similar characteristics. The idea is to find more than one similar mode shape because of the errors introduced with 

the estimation. This would mean that the result would be in a form of a cluster of modes, which have the most 

similar mode shapes to the one which was estimated using the ambient measurements. This is achieved using the 

calculated coefficients in the first step and transforming the estimated mode shape from the “regular” to the PC 

space. Furthermore, we used k-means clustering on the principal components to obtain 9 clusters of modes (the 

number of modes in one scenario). K-means is a clustering method which partitions the data into the desired 

number of clusters, where each point belongs to the cluster with the closest mean. The idea is that even if the 

method falls short in finding the closest scenario in the database, the estimated mode shape will almost certainly 

correctly fit to the closest cluster of mode shapes.  Figure 8, shows the PCA representation of the database and the 

estimated mode with a red “x”. On the right-hand side of the figure, we can also observe the clustering of the 

modes, where each cluster is presented with its corresponding centroid with a large, black colored “x”. The mode 

shapes of the modes coming from the same cluster as the estimated mode shape are also shown in Figure 9.   

 

 
Figure 8. Modes in the PCA space 
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Figure 9. Recognized similar modes 

 

We can draw several conclusions from the observed results. One important drawback, or issue that needs further 

addressing, is that we cannot be 100% positive about the accuracy of the estimated mode shape. The error 

introduced with the estimation could have a significant impact to the recognition of the mode shape latter in the 

process. Future work would eventually need to focus on this matter utilizing the approach conveyed in this paper 

or any other alternative method for mode shape estimation. On the other hand, concerning PCA as a dimensionality 

reduction technique, we showed that it can be successfully used in the visualization of modes through their mode 

shapes. Furthermore, in addition with k-means clustering it provides a useful approach to classifying similar modes 

together. When it comes to the usefulness of the method as a complete concept, which for future work needs to be 

validated on real life data, we argue that the real time nature of the method, together with the relative simplicity of 

the output results, provide important initial information about what is happening in our power system. Based on 

the results, additional analysis can be directed toward already familiar scenarios and adequate contingency 

measures can be evoked. 

 

5 CONCLUSION 

In this paper, we presented a method for real-time identification of the electromechanical characteristics of power 

systems. The steps to implementing the method started with the creation of the database, comprised of the mode 

shapes of poorly damped modes of a certain power system. Principal components analysis was conducted on that 

database, which in turn allowed for the plotting and clustering of similar modes according to their mode shape, 

which appear in different scenarios of the same system. In addition, we used spectral analysis to estimate a real-

time mode shape from ambient measurements which were obtained through a 10 min. simulation where we 

measured the response of the system during small disturbances. The estimated mode shape shares large similarities 

with a cluster of modes from the database, which was presented both in the PCA space and in a plot showing the 

mode shapes in polar coordinates. With the identified frequency of oscillations, the mode shape of the oscillations 

and the cluster in which the system would most likely appear, the method has the potential to be used for a fast, 

rough, estimation of the oscillatory characteristics of power systems.1 

  

 
1 This work has received funding from the European Union’s Horizon 2020 research and innovation programme. 

Project Sinergy (GA No. 952140). 
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