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Abstract—This paper discusses the importance of Big Data 
processing and analysis at the edge of the electric power grid due 
to the increasing integration of renewable energy sources, electric 
vehicles, and new loads that enable a greener transition. The 
volume, velocity, and variety of data generated by the EPS is 
rapidly increasing and real-time processing and analysis is 
necessary to improve system efficiency, reliability, and security. 
This paper presents an advanced edge cloud computing 
framework that addresses quality of service challenges and 
tackles some of the Big Data challenges. The framework enables 
various instantiation scenarios and consists of open-source tools 
for managing and automating the Edge-Cloud infrastructure. A 
case study of a 50 kWp photovoltaic power plant is used to 
demonstrate the effectiveness of the framework in processing and 
analyzing data at the edge. Three different analytic tools are 
presented that address real-time and batch processing at the edge 
to offload data processing and data availability from the cloud to 
the edge. The paper concludes that edge computing plays a 
critical role in modernizing EPS and paving the way for a more 
sustainable and resilient energy future. 

Index Terms—Edge, Cloud, PMU, forecasting, predictive 
maintenance, Big Data 

I. INTRODUCTION 

The electric power system (EPS) is undergoing significant 
changes due to the increasing integration of renewable energy 
sources (RES), electric vehicles (EVs), and the advance of 
larger new loads that enable a greener transition, such as heat 
pumps. As a result of the many new devices connected to the 
power grid, there has been a massive increase in the volume, 
velocity, and variety (3 V's ) of data generated by the EPS that 
must be processed and analyzed in real-time to improve system 
efficiency, reliability, and security. This can be further 
extended to 5 V's with veracity and value [1]. Therefore, the 
role of Big Data has become very important and must be 
properly considered to improve the operation and protection of 
the system [2]. Consequently, the demand for reliable and 
efficient data processing and analysis at the edge of the grid is 
more important than ever. 

The increasing use of electronic converters brings new 
challenges, especially in terms of stability, which need to be 
addressed [3]. Traditionally, stability is only evaluated through 
the parameters of the network, namely angle, frequency and 
voltage [4]. However, since the EPS system is live, a 
decentralized approach to Big Data processing and exploitation 
is desired. The results are then collected centrally and can be 
used to optimize the power efficiency and stability of the EPS. 
Therefore, edge computing becomes very important in a local 

micro-decision-making process, which can indirectly impact 
the whole EPS. 

In previous work, we have already developed an advanced edge 
cloud computing framework [5] that addresses quality of 
service (QoS) challenges and tackles some of Big Data 5 V’s 
challenges. The main idea is to process as much data as possible 
at the edge and forward only the enriched data to the central or 
cloud computer. This data can then be used for better 
observability and decision-making on the EPS. 

II. EDGE-CLOUD COMPUTING  

By processing data at the edge of the EPS, advanced analytics 
and consequently operators can make faster and more 
informed decisions about grid operations, leading to greater 
efficiency, reliability, and resilience. Edge computing also 
enables new applications such as real-time monitoring of 
renewable energy sources, dynamic load balancing, and 
predictive maintenance of critical infrastructure. Edge 
computing plays a critical role in modernizing EPS, so we used 
it in our pilot and tested some analytical tools. 

A. Pilot description 

The pilot used for testing the created analytics at the edge and 
on the central computer belongs to the Institute Mihajlo Pupin 
(IMP). On the central computer for supervision and control, 
VIEW4 SCADA is used, which covers the entire energy value 
chain in Serbia and the wider region. However, our setup has 
focused on the observability and integration of edge nodes into 
the complete Edge-Cloud system. 

 
Figure 1. IMP pilot SCADA and MySQL database 

At the edge, the 50 kWp photovoltaic (PV) power plant is 
installed on the roof of the building which was used for 
advanced analytics and Edge-Cloud case study demonstrations. 



In the measurement cabinet next to the PV inverters, we 
installed an edge computer running Debian Linux and a Phasor 
Measurement Unit (PMU) to study grid behaviour and the 
impact of RES on the grid. The PMU is an instrument that 
measures voltages, currents, angles and frequency in real-time 
using a very accurate GPS clock. In our case, we used a PMU 
with a reporting rate of 50 Hz. This means that the Edge can 
process a lot of data that in many cases has no added value for 
the rest of the system. Due to the high frequency, accuracy and 
real-time value of the PMU data, the data should be processed 
at the Edge [6] to reduce delay and reduce the amount of data 
to be transmitted. This comes into consideration even more 
when there are many Edge nodes. The edge computer was 
located inside the IMP private network. However, the central 
computer in our case, had a MySQL database that was separate 
from the security sensitive VIEW4 SCADA system and was an 
intermediate point between the networks, as it is shown in 
Error! Reference source not found.. Namely, VIEW4 
SCADA collects hundreds of datapoints from the pilot, where 
just few of them are relevant for the analysis presented in this 
paper. These data points, related to PV plant energy production 
and local weather measurements are fetched from SCADA and 
stored in MySQL database on a daily basis. From here on, the 
intermediate computer will be referred to as the central 
computer, since it has all functionality of the central computer 
and the Edge-Cloud framework was also installed on it.  

B. Edge-Cloud framework 

For the purpose of handling the algorithm development and 
deployment, we have developed an open-source Edge-Cloud 
framework1 that enables various instantiation scenarios. The 
framework consists of well-maintained and open-source source 
tools such as Portainer 2 , Rundeck 3 , Munin 4  and Docker 
Swarm5 that serve as tools for managing and automating the 
Edge-Cloud infrastructure. For security, the framework 
configures the tools and sets up SSH keys and an optional VPN. 

Figure 2 shows the Edge-Cloud framework with analytics 
services at the edge. As shown in the figure, the PMU streams 
real-time data to the influx DB via the Phasor Data 
Concentrator (PDC). From the influx DB, the real-time data is 
available to the services at the Edge. As described in the next 
section, the services process the real-time data or data batches. 
The services communicate with MySQL DB, where they write 

                                                           
1 https://github.com/PLATOONProject/edge-cloud-framework 
2 https://www.portainer.io/ 
3 https://www.rundeck.com/ 

the results and retrieve some of the historical values. Big Data 
analytics are performed on this data, which is outside the scope 
of this paper. It is worth noting that the live data at the edge can 
be stored only for a certain period of time. This adds an extra 
dimension to the analytics at the central layer as all data is 
available when needed. In most cases, once analytics detects an 
anomaly in the data, processing or performance, it can retrieve 
data for further processing, which can better support decision-
making at the central level. 

III. ANALYTICS 

As mentioned in the previous section, we can divide analytics 
into analytics at the edge and central layer. Each layer has its 
advantages, especially at the edge real-time processing and 
control are preferable, while the central layer has good 
observability of the EPS and is able to process a large amount 
of data. With these considerations and capabilities of Edge-
Cloud framework, the following services were developed: 

 RES effective tool 

 Predictive maintenance tool (with PV forecasting 
capabilities) 

 Event detector tool 

A. RES effective tool 

One of the challenges today is the high penetration of RES in 
the low voltage (LV) grid. If not well designed, this can lead to 
power quality (PQ) issues. Unfortunately, to understand the LV 
grid, one must be able to fully describe its complexity 
(transformers, topology, lines and loads), dynamic behaviour 
due to real-time interactions between variables affecting the 
system, availability of real-time and historical data, and have 
sufficient computational resources for simulations. 
Unfortunately, this process must be repeated for each LV grid 
of interest. 

4 http://munin-monitoring.org/ 
5 https://www.docker.com/ 

 
Figure 3. Edge-Cloud framework and analytic services at the edge.  

 
Figure 2. Measured daily maximal values of Voltages at with maximal daily 

PV production. edge. 



Here we present a data-driven method that uses the PMU at the 
point of installation for grid and power injection observability. 
We used the PMU because it provides real-time data with a 
reporting rate of 50 Hz. Unfortunately, smart meters (SM) 
report aggregated data only hourly, 15 minutes or even 1 
minute in some cases [7]. Already installed SMs usually do not 
have such a high reporting rate and should be reconfigured by 
DSOs to enable faster telegrams. However, even a granularity 
of 1 minute may not be sufficient to allow real-time 
observability. Therefore, we relied on PMU data for proof of 
concept. 

The main goal of the tool is to estimate the grid capabilities at 
the RES integration point using the grid observability data and 
production data collected by the PMU. The main idea is to 
monitor the grid and estimate each day the highest voltage (Um) 
with and without the RES. Once these voltages are collected 
for each day, the worst-case scenario is plotted against the 
maximum RES production (Pmax), Figure 3. Due to the 
stochastic nature of the low voltage grid, which is affected by 
both the situation on the LV and medium voltage (MV) side, 
we use only the daily maximum values. Applying a linear 
regression to the data, we obtain the slope (k):  

 𝑘 =
∆  

which is related to resistance of line (Rline) according to (2). 

 𝑅 =
∆

=
∆

𝑈 = 𝑘𝑈  

In our case, the calculated Rline value is about 0.12 Ω, assuming 
nominal voltage (Un) of 230 V for Um. This is very close to the 
expected values that can be estimated from the characteristics 
and lengths of cables to the substation. This value and the 
maximum daily voltage without PV are used to estimate when 
we would reach the highest allowable voltage on LV grid by 
PQ standards (1.1Un). Using the histogram in Figure 4, we can 
see the typical values for the maximum PV size. If we are 
conservative and take the lowest value, the size of the PV 
power plant could be increased by 50%. There are many other 

                                                           
6 https://joint-research-centre.ec.europa.eu/pvgis-online-tool/getting-started-

pvgis/api-non-interactive-service_en 

measures, not considered here, that could allow us to use an 
even larger PV plant. 

B. Predictive maintenance tool 

The predictive maintenance tool consists of two parts.  The first 
part is executed once per day and estimates PV module 
degradation. This can be used to create data-driven PV 
forecasts that change with the performance of the modules. The 
other part is a real-time monitoring and labelling tool described 
in Section III. C.  

For good PV forecasting and predictive maintenance, the 
installation details such as nominal power, orientation and 
other design parameters such as the type of modules and 
inverters are needed. Usually, not all parameters are known, 
moreover PV modules degrade during the long operation time 
[8]. Therefore, a more robust data-driven model that can 
compensate for degradation and the absence of installation 
parameters is needed. Here we present such an approach. 

The block diagram of the predictive maintenance tool is shown 
in Figure 4. It consists of two main branches, the modelled 
historical PV plant and the measured PV plant output. The 
branch that models the historical PV plant output is using 
simple PV model, enhanced with micro location adjustment. 
The adjustment is taken from the weather forecaster insolation 
data for specific location, which is adjusted to the micro 
location of the PV system, by using historical satellite values6. 
In this way shading in valleys, for example, can be effectively 

 
Figure 6. Estimation of PV modules degradation from c.f. using different 
linear regression estimators.  

 
Figure. 5. Block diagram of PV predictive maintenance tool.  

 
Figure 4. Histogram of maximal PV size for each day. 
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accounted for. By comparing the modelled output and 
generated output for some time using filters and weights we 
obtain the correction factor (c.f.) that is used in the PV model 
to improve the forecasting.  

Since there are seasonal fluctuations in the power performance 
related to the change in spectrum, we would need a longer time 
period to better estimate the small changes in PV module 
degradation. Nevertheless, we can estimate the degradation for 
a period of less than 2 years, for which we used different 
regression estimators (Figure 6). Since c.f. contains the 
information on degradation of PV modules and location related 
power losses, it can be used to improve the simple PV forecast 
model. In Figure 7, we compare the forecasted values with the 
measured values. Good agreement is obtained, however due to 
local effects (e.g., obstruction of irradiance by local clouds) 
only averaged power performance (without spikes) is obtained 
with the use of general weather forecast for the pilot area. 

C. Event detector tool 

The Event detector tool is a real-time tool and is shown in the 
yellow box in Figure 5. The tool monitors in real-time the 
voltages, currents and powers of all three phases, which are 
received from the influx DB. The tool can detect anomalies in 
the production of the PV plant, it characterizes the anomaly, 
labels it and sends the alarm to the central MySQL DB, from 
where appropriate actions can be taken. It can detect power 
drop, unbalanced power production (e.g. inverter failure), 
lower production (module/string failure). Since no failure was 
detected during the runtime of the experiment, the PMU 
measurements were artificially distorted to test the detection 
of unbalanced power generation. The event detector tool 
generated an event with the label as shown in Figure 8. From 
the alarm we can see that inverter 1 has a problem in phase 2 
(P2). 

IV. CONCLUSIONS 

With the increasing integration of renewable energy sources, 
electric vehicles, and larger loads such as heat pumps, the EPS 
is undergoing significant changes. The role of Big Data in 
improving the efficiency, reliability, and security of the power 
system is becoming increasingly important. The use of 
electronic converters has brought new challenges that need to 
be addressed, especially stability. Edge computing is becoming 
increasingly important in the local micro decision-making 
process, leading to a greater indirect impact on the power 
system. Edge-Cloud framework developed for this purpose 
enables various instantiation scenarios that algorithms can 
benefit during the design process. The pilot described in this 
paper demonstrates the successful integration of edge nodes 
into the complete Edge-Cloud system. By leveraging real-time 
data from PMUs and Big Data analytics, the EPS can be better 
optimized and maintained to create a more sustainable and 
resilient energy future.  

We have presented three tools developed based on real-time 
data obtained at the edge. Data at the edge not only contains 
information about the grid, but is also heavily influenced by 
nearby connected assets. This has given us the opportunity to 
develop specialised tools that can give us advantages at the 
local level, at the community level, or at the DSO level.  

With penetration of SMs into the LV grid, the feasibility test of 
replacing PMU measurements with the SM measurements 
should be done. This would make the tools much more 

accessible to a broader group of interested parties, as the 
investment costs would be lower. In the existing tools, we have 
interpreted the results very conservatively, therefore we expect 
performance should not deteriorate too much if a smaller 
amount of data is available from the SMs. For example, the SM 
based RES effect tool could be in the end used by DSOs to 
estimate the capability to integrate new RES into the grid 
without modelling and simulating the grid, which takes a lot of 

resources.  

All three tools performed well and the developed analytics is 
not computationally or resource intensive, and could be easily 
deployed. 
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Figure 8. Alarm in the MySQL DB generated by event tool. 

 
Figure 7. PV forecasted results (green curve) compared to measurements. 


