

WP₃ Learning Material, Training Courses and Joint Proposal Preparation

D3.2 Training Courses and Learning Material on Smart Grid Technologies (v2)

Deliverable due date	30/06/2023
Deliverable submission date	30/06/2023

	Dissemination level (marked with "X")	
PU	Public, to be freely disseminated	Х
CO	Confidential, only for members of the consortium including the Commission	

This project has received funding from the H2020 programme of the European Union under GA No. 952140

Project Acronym	SINERGY
Project Title	Capacity building in Smart and Innovative eNERGY management
Project Website	https://project-sinergy.org/
Grant Agreement no.	952140
Call identifier	H2020-WIDESPREAD-2020-5
Topic identifier	WIDESPREAD-05-2020
Funding scheme	Twinning
Project duration	January 1 st , 2021 - December 31 st , 2023 (36 months)
Coordinator	Institute Mihajlo Pupin (IMP)

Document metadata

Deliverable no.	D3.2	
Deliverable title	Training Courses and Learning Material on Smart Grid Technologies (v2)	
Related WP no.	WP3	
Related WP title	Learning Material, Training Courses and Joint Proposal Preparation	
Lead beneficiary	AIT	
Contributors	AIT staff involved in training activities	
Deliverable type	Other	

Document revision history				
Version/name Date Institution Author(s)		Author(s)		
V1.0 (draft)	20/06/2023	AIT	Johannes Stöckl	
Internal review 27/06/2023 IMP Valentina Janev		Valentina Janev		

Executive Summary

The main objective of SINERGY work package 3 is to establish collaboration with strategic partners, i.e. AIT and NUIG, and enable expertise and "know-how" exchange in the area of smart grids, distributed energy resources, building optimization and building information modelling.

Task 3.1 focuses on the preparation of training courses on Smart Grid Technologies as mainly provided by the partner AIT Austrian Institute of Technology. The course structure is designed to cover all system levels from the grid and its operation down to the individual components (mostly power electronics converters) and the connecting control structures.

This report (Deliverable 3.2) summarizes the proposed training courses in the field of Smart Grid Technologies, the advances of the training based on the courses performed from January 2021 to June 2023. It also serves as an update to Deliverable 3.1 where an overview was provided for the first period of the project.

During this reporting period a total of 12 lectures by 10 different AIT lecturers have been performed (either online or on AIT or IMP premises) which is in line with the project proposal (3 to 6 per year). One training was added with respect to previous reports to provide access to the AIT SimLab environment, which is a virtual laboratory for Smart Energy simulation tasks. Towards the end of the project, 4 more training lectures will be conducted to finalize the AIT training efforts within the Sinergy projects.

The individual courses which have been performed are presented with respect to content, sources, references, and training material.

SINERGY repository of lectures is accessible at this link <u>https://project-sinergy.org/Lectures</u>.

Table of Contents

1.	Introduction	6
	1.1 Scope	6
	1.2 Relation to other deliverables	6
	1.3 Structure of Modules	7
2.	Lecture Materials - Module "Distribution Grids" (SGDG)	10
3.	Lecture Materials - Module "Automation" (SGAT)	14
4.	Lecture Materials - Module "Power Electronics" (SGPE)	21
5.	Lecture Materials - Module "HIL-Simulation" (SGHS)	26
6.	Conclusion	31

List of Figures

Figure 1. AIT Lectures in SINERGY repository (example)	6
Figure 2 Structure of core topics	7
Figure 3. Example of training at AIT premises	18
Figure 4. Example of online training with Markus Makoschitz	23
Figure 5. Example of online training with Zoran Miletic	
Figure 6. Example of online training with Georg Lauss	
Figure 7. Example of training with Zoran Miletic at IMP premises	30

List of Tables

Table 1. Smart Grid Technologies Lectures (delivered by M30)	8
Table 2. Smart Grid Technologies Lectures (to be delivered after M30)	9

Abbreviations and Acronyms

SGAT	Smart Grid "Automation"
SGDG	Smart Grid "Distribution Grids"
SGHS	Smart Grid "HIL-Simulation"
SGPE	Smart Grid "Power Electronics"

6

1. Introduction

The courses in this deliverable focus on the field of Smart Grid Technologies which are performed by AIT Austrian Institute of Technology.

1.1 Scope

The main scope of work package 3 (Learning Material, Training Courses and Joint Project Proposals Preparation) can be summarized as:

- Task 3.1: Preparation of training courses on Smart Grid technologies (D3.1 and this report D3.2)
- Task 3.2: Preparation of training courses on Energy Efficient Building Operation (D3.3 and D3.4)
- Task 3.3: Joint project proposals preparation and management skills upgrade (D3.5)

This report lists the proposed lectures (see for instance Figure 1, a screenshot from the SINERGY repository)¹ with an update on personnel with respect to the project proposal. Further, it provides an overview on the already performed trainings and insight on the pending activities for the upcoming project duration. Respective training materials and webinar recordings are listed in the subsequent sections.

			Search	
>1n	lerg	N		
Capacity building in	Smart and Inno	ovative		
eNERGÝ managěm	ent			
Home 👻	Project 👻	Pilots eLearning + Events + Expected Results + JoinUs +		
Home >				
Domain Smart gri	d technologies	v		
Status Delivered	~			
Apply				
ID				
SGDG-01	AIT	Reference architectures for Smart Grids		
SGPE-01	AIT	Fundamentals of Power Electronics		
SGPE-04 AIT Control of grid power converters for Photovoltaic applications				
SGHS-02	GHS-02 AIT Simulation and modelling of Power Converters and Power Conversation Systems			
SGAT-01	SGAT-01 AIT Modern ICT/Automation Approaches for Smart Grids and Industrial Environments			
SGHS-01	AIT	Hardware-in-the-Loop (HIL) methods for Power System Components (methods)		

Figure 1. AIT Lectures in SINERGY repository (example)

1.2 Relation to other deliverables

The deliverable is linked to the following deliverables:

- D1.1 Project Work Plan
- D2.1 Scientific and Technological Landscape of Smart Energy Management and SWOT analysis

¹ <u>SINERGY Lectures | Project Sinergy (project-sinergy.org)</u>

7

- D3.1 Training Courses and Learning Material on Smart Grid Technologies (v1)
- D3.3 Training courses and learning materials on Energy Efficient Building Operation (v1)
- D3.4 Training courses and learning materials on Energy Efficient Building Operation (v2)
- D4.1 Report on Mutual Exchange of Personnel and Training Activities
- D4.2 Report on early stage researcher engagement and mentoring
- D5.1 The first Sinergy Workshop Smart Grid Technologies
- D5.3 The Third SINERGY Workshop Belgrade's Smart Energy Management laboratory
- D6.2 Sinergy web portal and communication material

1.3 Structure of Modules

As training activities in the field of Smart Grid Technologies a set of lectures have been defined during the proposal preparation phase. The order is based on the system level with respect to the grid from distribution grids in general towards, operation and digitalization toward power electronics topics as seen in Figure 1. The courses are listed including AIT staff in charge to provide the training and the actual status in the project timeline (Table 1). Courses which have been performed are indicated with "done" while upcoming courses show "pending" with the proposed year of execution in brackets.

Figure 2. - Structure of core topics

The respective information for already performed trainings can be found in the subsequent chapters. The description of the lectures can be retrieved via this link <u>SINERGY Lectures</u> | <u>Project Sinergy (project-sinergy.org)</u>.

	Smart Grid Technologies			
ID	Module Title (version 1)	Delivered by:	Status:	
SGDG-01	Reference architectures for Smart Grids	Friederich Kupzog	done	
SGDG-03	Network planning for DC, and ACDC- Hybrid-Grids	Gerhard Jambrich	done	
SGAT-01	Modern ICT/Automation Approaches for Smart Grids and Industrial Environments	Thomas Strasser	done	
SGAT-02	Grid Interconnection Codes and Requirements - Review of Todays codes and requirements and future trends	Roland Bründlinger	done	
SGAT-04	Electric Energy Storages	Christian Messner	done	
SGAT-05	SmartEST SimLab Demonstration	Edmund Widl, Thomas Strasser	done	
SGPE-01	Fundamentals of Power Electronics	Markus Makoschitz	done	
SGPE-02	Grid power converters, architecture, and design considerations	Markus Makoschitz	done	
SGPE-04	Control of grid power converters for Photovoltaic applications	Zoran Miletic	done	
SGHS-01	Hardware-in-the-Loop (HIL) methods for Power System Components (methods)	Georg Lauss	done	
SGHS-02	Simulation and modelling of Power Converters and Power Conversation Systems	Zoran Miletic	done	
SGHS-03	Rapid Controls Development for the Grid Connected/Forming Power Converters	Zoran Miletic, Andres Tarraso- Martinez	done	

Table 1. Smart Grid Technologies Lectures (delivered by M30)

	Smart Grid Technologies			
ID	Module Title (version 2)	Delivered by:	Status:	
SGDG-02	Enhancement of the hosting capacity of distribution grids	Barbara Herndler	pending (Q3/2023)	
SGDG-04	Integrating DER in Smart Grids and High penetration of PV in Electricity Grids	Roland Bründlinger	pending (Q4/2023)	
SGAT-03	Standards for integrating PV in Electricity Grids	Roland Bründlinger	pending (Q4/2023)	
SGPE-03	Emerging Technologies for Power Electronics Systems in Smart Grids	Markus Makoschitz	pending (Q3/2023)	

Table 2. Smart Grid Technologies Lectures (to be delivered after M30)

2. Lecture Materials – Module "Distribution Grids" (SGDG)

SGDG-01 - R	Reference architectu	ures for Smart Grids	
Delivered by:		Keywords	
Friederich Kupz	zog, Jawad Kazmi	Smart Grid	
<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header>			
Reference arch	itectures for Smart Grids	Project Sinergy (project-sinergy.org)	
Duration	40 minutes		
Summary	Due to the advancing digitalization, which also affects the energy systems unprecedented level of information technology networking is being achieved step by step. This leads to two main challenges for the system design: on the one hand, interoperability between different (sub)systems and component must be ensured, on the other hand, effective security and data protection measures are required to protect this critical infrastructure from cyber-att and to increase consumer acceptance. A high security of supply can only b guaranteed in the long term if both challenges of technological developm are taken into account when designing future smart grids. The workshop dealt with the main two reference architectures for smart grids.		
	relevant in an Europear in planning of future system to a new smart grid arcl security bring additiona	a context. Such a reference architecture aims to support stems and migrating from existing legacy architectures hitecture. Especially the requirements for safety and al complexity into the system.	
	(SGAM) as developed in	the EU Mandate M/470 by CEN, CENELEC and ETSI,	

9

the US American Smart Grid Conceptual Model was introduced. This model, published by the US National Institute of Standards and Technology (NIST), also referred to as "NIST-Model", introduces the main scope of the reference architecture and has a strong focus on interoperability. Subsequently, the European SGAM Model was discussed, and example applications were modeled in SGAM to illustrate the benefits of using a unified modeling approach to describe smart grid use cases. Best practices and learnings around the usage of SGAM were discussed.

Reference Material

- Technologieplattform Smart Grids Austria (TPSGA): Technologieroadmap Smart Grids Austria - Die Umsetzungsschritte zum Wandel des Stromsystems bis 2020. Technical report, Technologieplatform Smart Grids Austria, April 2015. http://www.smartgrids.at/index.php?download=372.pdf
- Smart Grid Coordination Group: Smart grid reference architecture. Technical report, CEN-CENELEC-ETSI, November 2012. http://www.cencenelec.eu/standards/Sectors/SustainableEnergy/SmartGrids/Pages/def ault.aspx
- GridWise Architecture Council Interoperability Framework Team: Interoperability Context-Setting Framework. Technical report, GridWise Architecture Council, July 2007. http://www.caba.org/resources/Documents/IS-2008-30.pdf
- Kreutzmann, H., Vollmer, S.: Protection profile for the gateway of a smart metering system (smart meter gateway pp). Technical report BSI-CC-PP-0073, Bundesamt für Sicherheit in der Informationstechnik (BSI) Federal Office for Information Security, Germany, March 2014.

https://www.bsi.bund.de/DE/Themen/SmartMeter/Schutzprofil_Gateway/schutzprofil_ smart_meter_gateway_node.html

- Federal Office for Information Security Germany: Protection profile for the security module of a smart meter gateway (security module pp). Technical report BSI-CC-PP-0077-V2, Bundesamt für Sicherheit in der Informationstechnik (BSI), December 2014. https://www.bsi.bund.de/DE/Themen/SmartMeter/Schutzprofil_Security/security_mod ule_node.html
- Smart Grid and Cyber-Physical Systems Program Office and Energy and Environment Division, Engineering Laboratory, Physical Measurement Laboratory, Information Technology Laboratory: NIST Framework and Roadmap for Smart Grid Interoperability Standards Release 3.0. Technical report SP 1108R3, NIST, February 2014. http://www.nist.gov/smartgrid/upload/NISTDraftFrameworkOct_2013.pdf
- Smart Grid Interoperability Panel: Guidelines for smart grid cyber security. Technical report 7628, Cyber Security Working Group, (NIST), September 2010. http://www.nist.gov/smartgrid/upload/nistir-7628_total.pdf

SGDG-03 – Network planning for DC, and ACDC-Hybrid-Grids				
Delivered by:		Keywords		
Gerhard Jambrich		Smart Grid		
MV P DC- A SINERGY Johannes Markus M Center for Competen	COMER ELECTION AND ACDC-HN – 3 rd Workshop, Belgrade Stöckl akoschitz, Gerhard Jambri Energy Ice Unit Electrical Energy St	RONCS BRID GRIDS 2022 ch, Nina Fuchs, Helfried Brunner Systems		
Duration	120 minutes			
Summary	Due to the increasing share of power electronics which contribute to a state electricity grid the area of DC- and ACDC-hybrid grids becomes more interesting for the distribution system.			
	The training starts with benefits in terms of vo enabling technologies relevant use cases are o charging as well as distr communities in rural ar	the motivation of DC infrastructures and the potential plume, weight, and costs. With a brief introduction of (MF-transformers and WBG power semiconductors) discussed. This includes localized infrastructures for MW- ribution lines which provide low loss power flow for single eas in Finland.		
	Beyond that the vision H2020 project "Hyperri or MV-distribution is dis breakers until grid desig flow analysis are shown	of distribution grid installations as proposed in the de" (GA No. 957788) with coupling to MVDC backbones scussed. Further, enabling technologies from DC circuit gn and development tools for DC grid planning and load n.		
	For the specific use case presented where DC pre efficiently integrate rer	e of electric energy for industrial processes projects are oduction lines benefit from extension with DC lines to newables and storage technologies.		
	The field of laboratory i technologies is present	nfrastructures for test and validation of relevant DC ed with the use case of AIT SmartEST laboratory and		

		1		
		AIT High Current DC laboratory where respective test procedures are developed.		
Refere	ence Mate	erial		
•	N. Fuch ANALY The 26t Confere	s, G. Jambrich and H. Brunner, "SIMULATION TOOL FOR TECHNO-ECONOMIC SIS OF HYBRID AC/DC LOW VOLTAGE DISTRIBUTION GRIDS," CIRED 2021 - h International Conference and Exhibition on Electricity Distribution, Online ence, 2021, pp. 2549-2553, doi: 10.1049/icp.2021.2122.		
•	G. Jamb distribu Microgr 10.1109	orich, J. Stöckl and M. Makoschitz, "MVDC ring-cable approach for new DC ntion and restructured AC grids," 2019 IEEE Third International Conference on DC rids (ICDCM), Matsue, Japan, 2019, pp. 1-5, doi: o/ICDCM45535.2019.9232731.		
•	Kupzog 413–414	, F., Jambrich, G. & Brunner, H. DC-Technologien. Elektrotech. Inftech. 139, 4 (2022). https://doi.org/10.1007/s00502-022-01042-z		
•	 Jambrich, G., & Fuchs, N. (2021). CIRED WG 2019-1 DC distribution networks - Final Report. DC DISTRIBUTION NETWORKS - WG 2019-1. 			
•	Jambrid & Sanch Voltage Vienna	:h, Gerhard, Stöckl, Johannes, Strasser, Thomas I., Munoz-Cruzado Alba, Jesus, nez, Breogan. (2021, November 30). Towards Resilient hybrid Medium and Low AC-DC Power Grids – A European Perspective. 3rd CIGRE SEERC Conference 2021 (CIGRE SEERC Vienna 2021), Online.		
•	HYPER Integra	RIDE: HYbrid Provision of Energy based on Reliability and Resiliency via tion of DC Equipment https://hyperride.eu/		
•	Tigon Project: https://tigon-project.eu/			

3. Lecture Materials – Module "Automation" (SGAT)

SGAT-01 - Modern ICT/Autor Industrial Environments	mation Approaches for Smart Grids and
Delivered by:	Keywords
Thomas Strasser	Automation, ICT, Digitalisation, Smart Grid, Power System, Lecture, Summer School, European Union (EU), Project, H2020, SINERGY, GA 952140 (according to https://doi.org/10.5281/zenodo.6088671)

Modern ICT/Automation Approaches for Smart Grids and Industrial Environments

Thomas I. Strasser Center for Energy – Electric Energy Systems AIT Austrian Institute of Technology, Vienna, Austria

LAMBDA Summer School – SINERGY Session, June 15-16, 2021, online

https://doi.org/10.5281/zenodo.6088671

<u>Modern ICT/Automation Approaches for Smart Grids and Industrial Environments | Project</u> <u>Sinergy (project-sinergy.org)</u>

Duration	40 minutes
Summary	There is a continuously growing demand for electricity, which must be satisfied by the electric energy systems worldwide. At the same time, a stable supply must be guaranteed. The current situation with CO ₂ emissions and global warming has created an obvious trend towards a sustainable electric energy system. The integration of Renewable Energy Sources (RES) is an important requirement. Such renewable sources, but also energy storage systems and flexible loads provide enhanced possibilities but power system operators and utilities have to cope with their fluctuating nature, limited storage capabilities and the typically higher complexity of the whole infrastructure. Additionally, due to changing framework conditions, like the liberalization of the energy markets and new regulatory rules, as well as technology developments (e.g., new components), approaches for design, planning, and operation of the future

9

electric energy system have to be restructured. Sophisticated component design methods, intelligent Information and Communication Technology (ICT) architectures, automation and control concepts as well as proper standards are necessary in order to manage the higher complexity of intelligent power systems (i.e., smart grids). Therefore, this training course provides an overview of ICT and automation-based approaches, concepts, methods and related standards which are important for the realization of smart grid systems.

Reference Material

- T. Strasser, F. Andren, J. Kathan, C. Cecati, C. Buccella, P Siano, P Leitao, G. Zhabelova, V. Vyatkin, P Vrba, V. Marik: "A Review of Architectures and Concepts for Intelligence in Future Electric Energy Systems"; IEEE Transactions on Industrial Electronics, Volume 62 (2015), Issue 4; 2424 - 2438.
- F. Andren, R. Bründlinger, T. Strasser: "IEC 61850/61499 Control of Distributed Energy Resources: Concept, Guidelines, and Implementation"; IEEE Transactions on Energy Conversion, Volume 29 (2014), Issue 4; 1008 - 1017.
- F. Pröstl Andren, T. Strasser, W Kastner: "Engineering Smart Grids: Applying Model-Driven Development from Use Case Design to Deployment"; Energies, 10 (2017).
- T. Strasser, F. Andren, F. Lehfuss, M. Stifter, P. Palensky: "Online Reconfigurable Control Software for IEDs"; IEEE Transactions on Industrial Informatics, Vol. 9, August 2013 (2013), No. 3; 1455 - 1465.
- M. Faschang, S. Cejka, M. Stefan, A. Frischenschlager, A. Einfalt, K Diwold, F. Pröstl Andren, T. Strasser, F. Kupzog: "Provisioning, deployment, and operation of smart grid applications on substation level: Bringing future smart grid functionality to power distribution grids"; Computer Science - Research and Development, Special Issue Paper (2016), 1 - 14.
- J. Resch, B. Schuiki, S. Schöndorfer, C. Brandauer, G Panholzer, F. Pröstl Andren, T. Strasser: "Engineering and validation support framework for power system automation and control applications"; e & i Elektrotechnik und Informationstechnik, issue 8 (2020), Volume 137; 470 475.

SGAT-02 - Grid Interconnection Codes and Requirements - Review of Todays codes and requirements and future trends											
Delivered by:				Key	ywords						
Roland Bründli	nger			Aut	tomatio	on, ICT, C	Grid Cod	es, Sma	rt Grid,	Power	
	5			Sys	stem, Le	ecture					
Country F	Requiremer	its – LV	conr	nect	ted, Typ	be A PP	PMs		÷¥≎	STRIAN INSTITUTE	
Country Update 12/2021	NC RfG	EN 50549-1 (Type A)	Germ	any	Italy	Austria	France	Spain	Denmark (Type A)	UK*	
Type A power lim	t (MW) ≤1	≤1	≤0.1	35	≤0.011	≤0.25	≤1	≤0.1	≤0.125	≤1	
Function	2016	2019	201	18	2019	2019	2019	2019	2019	2018/2018	
Frequency range	Yes	Yes	Ye	S	Yes	Yes	Yes	Yes	Yes	Yes/Yes	
ROCOF withstand	l cap. Yes	Yes	Ye	S	Yes	Yes	Yes	Yes	Yes	Yes/Yes	
P(f) at over freq.	Yes	Yes	Ye	S	Yes	Yes	Yes	Yes	Yes	Yes/Yes	
P(f) at under freq.	N/S	Yes	Ye	s	Yes	No	No	No	No	No/No	
Q/cosφ range	N/S	Yes	Yes (c	cosφ)	Yes (all)	Yes	No	No	Yes	No/No	
Cos $\phi(P)$	N/S	Yes	Yes ((all)	Yes (all)	Yes	No	No	Yes	No/No	
Q(U)	N/S	Yes	>4.61	kVA	>11.08 kW	Yes	No	No	No	No/No	
P(U)	N/S	Optional	Allow	/ed*	Optional	Yes	No	No	No	No/No	
Ramp rate limits	D N/S	NO	>201	IS LAN		NO	NO	NO	NO	No/No	
Remote control of	P N/S	Ontional	>30r	KVV D	>11.00 KW	No	No	No	No	No/No	
Remote off	Yes	Yes	Ye	s	Yes (all)	Yes	No	No	Yes	Yes/Yes	
LVRT (UVRT)	No	Yes	Yes	s*	>11.08 kW	Yes	No	No	No	No/Optional	
HVRT (OVRT)	No	Yes	Yes	s*	No	No	No	No	No	No/No	
Fast reactive curr	ent	No	No	C	No	No/Yes*	No	No	No	No/No	
Reference	(EU) 2016/631	EN 50549-1:2019	VDE AR N 2018	N 4105:	CEI 0-21:2019	TOR Erzeuger Type	Arrêtê du 23 avril	Propuesta OM	Dansk Energi Guide	ENA_EREC_G98_I	
	(10 10)		2010			A.2010-07	Enedis-NOI-	Norma Tecnica	power-generating	ent_1_2018	
							RES_13E V 7 2018	Supervision V1.0	voltage grid Type A	ssue_1_Ammendm	
Remarks	* non exhaustive		* Not rec	nuired	* Additional lock-in/-	* On request of		*Draft proposals	and B V1.1	ent_1_2018	
i contra	requirements subject to implementation in		Hot for	quireu	out function	DSO		only		≤16 A/>16 A	
https://erigrid2	.eu/smartes	t-sim-lab						Energ	Technology Network	000	
Duration	40 minutes	;									
6	-		-								
Summary	The trainin	g given o	on D	ece	mber 15	, 2022 h	ughlight	ed lates	st trends	in grid (code
-		and a fam.					المحالية والأرب	يرمين أورمت			d a se
	aevelopme	ents for	the	con	nection	οτ αιςτ	ributea	and rer	newable	genera	tion,
	focusing or	+ho ovn	orion		from E		c on intr	aductio			a tha
	To cosing of	i the exp	enen	ices	HOILE	Jope. A	Sammu	Juoctio	i, an ove		ruie
	role of Sol	ar PV an	W h	ind	generat	tion in t	he Furo	nean el	octricity	system	was
				ina	genera			pean cr	cettery	system	was
	provided a	also aivin	nd an	out	tlook or	the exr	pected fi	iture de	velonme	ent hase	d on
	promaca, c	g	'g un						- ciopini		a o
	the latest E	European	ı stra	tea	v docun	nents.					
				3	,						
	1					• • • •		-			
	in the sec	cond pai	rt of	th th	e train	ing cou	rse, the	e Europ	ean Ne	twork (_ode
	ND										
	Requirem	ents for g	gene	rato	ors" (INC	. KTG) Wa	as preser	itea in d	jetali, ež	cplaining	jτne
	1					a			1.00		
	basic appr	oacn, re	equir	eme	ents an	a their	applica	τιοή το	antere	пт туре	S OT
	acheroting			- 4-	مانحدما	م م ا م مما ا					find
	generating	systems	. AS	uie	uetallet	r imbien	lentatio	intequi	ements	are spec	meu
	on the European national levels, an evention on the differences related to the										
	on the colopean national levels, an overview on the unreferices related to the										
	requirements was provided for selected European markets.										
	In the third part of the training course, the new EN 50549-X series of European										
	standards was introduced, which expand the definitions of the European										
	Network Code RfG to cover all requirements relevant for the connection of										
	approximation protones to the Low Velaces and Madrid Velaces distribute										
	generating systems to the Low-Voltage and Medium-Voltage distribution			noin							
	systems										
	systems.										
	L										

The fourth part of the training course was dedicated to latest experiences with testing of distributed resources (DER), which were made by AIT in research and demonstration projects. In this part, the application of innovative approaches for testing of DER was presented, highlighting opportunities as well as limitations of the different concepts.

Reference Material

- Global Market Outlook For Solar Power 2022-2026; https://www.solarpowereurope.org/insights/market-outlooks/global-market-outlookfor-solar-power-2022
- https://www.entsoe.eu/major-projects/network-code-development/requirements-forgenerators/
- EN 50549 SERIES CENELEC TC8X WG03: Advanced grid support requirements for inverter based generating plants ("Power Park Modules")

SGAT-04 — Electric Energy Storages			
Delivered by:	Keywords		
Christian Messner	Electric Energy Storage, Battery Storage, Automation, ICT, Digitalisation, Smart Grid, Power System, Training		

Figure 3. Example of training at AIT premises

Duration	1 day
Summary	Battery electric energy storage systems started to become consumer products about 10 years ago starting with limited data sheet requirements. Hence, the available products were not easily comparable and normally not tested according to comparable procedures. Consequently, EU research institutes and test laboratories aligned to develop a proper guideline on the test procedures presented as a guideline of best practice. Such tests involve e.g. round trip efficiency (cycles of charging and discharging) or set point accuracies. AIT as a presenter of this course was involved from the beginning and is able to conduct the most relevant tests of storage performance in its Smart Grids Laboratory "SmartEST"

The course started with an introductory presentation on PV Home Storage Systems. Later, the operation of the "Sunny Boy" 10kVA single-phase inverter with DC sources emulating PV panels and 3kWh battery storage was also shown, where basic operations and auxiliary functions for supporting the grid were demonstrated.

The training course provides an overview of performance test and validation of battery electric energy storage systems. The training was conducted during a staff exchange event at AIT premises.

Reference Material

- Rosewater, David; Johnson, Jay; Verga, Maurizio; Lazzari, Riccardo; Messner, Christian; Bründlinger, Roland; Kathan, Johannes; Hashimoto, Jun; Otani, Kenji. (2015). International development of energy storage interoperability test protocols for renewable energy integration.
- Tjaden, Tjarko; Weniger, Johannes; Messner, Christian; Knoop, Michael; Littwin, Matthias; Kairies, Kai-Philipp; Haberschusz, David; Loges, Hauke; Quaschning, Volker. (2017). Offenes Simulationsmodell für netzgekoppelte PV-Batteriesysteme.
- Kulkarni, Siddhi Shrikant & Büchle, Felix & Munzke, Nina & Heckmann, Wolfram & Giesen, Niklas & Messner, Christian. "Effizienzleitfaden für PV-Speichersysteme: Wiederholbarkeit und Einfluss von Mess- und Auswerteparametern / Efficiency Guideline for PV Storage Systems: Repeatability and impact of measurement and evaluation parameters.", 2022
- N. Ninad et al., "PV Inverter Grid Support Function Assessment using Open-Source IEEE P1547.1 Test Package," 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 2020, pp. 1138-1144, doi: 10.1109/PVSC45281.2020.9300372.
- C. Seitl, C. Messner, H. Popp and J. Kathan, "Emulation of a high voltage home storage battery system using a power hardware-in-the-loop approach," IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 2016, pp. 6705-6710, doi: 10.1109/IECON.2016.7794104.

SGAT-05- SmartEST SimLab Demonstration			
Delivered by:	Keywords		
Edmund Widl, Thomas Strasser	Virtual Lab, Simulation		

MOSAIK-DOCKER COMMANDS	🛛 Launcher X	Sim Setup Configuration ×		
+ Create Simulation Setup	🁺 mosaik-docker	SIMULATION SETUP LOCATION: /HOME/JUPYTER-WIDLE/MOSAIK-DOCKER-DEMO/MONOLITHIC		
 Configure Simulation Stepp Check Simulation Stepp Build Simulation Stepp Build Simulation Stepp Care Simulation Care Simulation Care Simulation Care Simulation Results Check Simulation Results Delete Simulation Setup 	Decumentation Commentation Decumentation Decumentation Approximation Approximation Commentation	Nume of the messil scenario file: main.gv Path to the Dockerfile for the simulation orchestrator image: doctrrike_thousefile,main Additional files to be added to the simulation orchestrator image (comma separated list): doctrrike_thousefile,main Additional files to be added to the simulation orchestrator image (comma separated list):		
	Sending build context to below deems 6208 Step 212: 1799 Wookik/cort-basev1 > biogenet/senders/senders/senders/ > biogenet/senders/ > biogenet/ > biogenet/ ->> biogenet/ > bi			
	Simulation Status × SIMULATION STUP LOCATION: /HOME/JUPYTER-WIDLE/MOSAIE-DOCKER-DEMO/MONOLITHIC Running Simulations	<pre>sis_config {</pre>		
	• cidibidi: Up 31. seconds • Bc2796a: Up 34. seconds • 335cbc: Up 36. seconds			
	Finished Simulations			
	 3916ce: Exited (1) 1 second ago a17c82: Exited (1) 3 seconds ago 	10 } 20 21 START = '2014-01-01 00:00100'		
	REFRESH	22 END = 7° 24 ° 3660 # 1 unch 23 PV_DATA = 'data/yu_1860, inneb.csv' 24 PMOTH ETLE - 'data/yu_1860, inneb.csta = s'		

https://zenodo.org/record/6810644				
Duration	120 minutes			
Summary	This course serves as an introduction to working with the SmartEST Sim Lab platform. The virtual environment has been created as part of the EU project "EriGRID 2.0" and has been opened to the Sinergy consortium for free use. This lecture was provided to help new users from Pupin and Galway to learn about the user interfaces and the capabilities.			
	An overview is provided on the prerequisite packages Jupyter, Mosaik, Docker and how those interact to set-up the environment.			
Reference Mat	erial			
Access	-point: https://smartest-sim-lab.erigrid2.eu/hub/about			
Prereq	uisite package MOSAIK: https://mosaik.offis.de/			
Prereq	uisite package DOCKER: https://docs.docker.com/			
Prereq	uisite package JupyterLab: https://jupyter.org/			

4. Lecture Materials – Module "Power Electronics" (SGPE)

SGPE-01 - Fundamentals of Power Electronics				
Delivered by:		Keywords		
Markus Makoso	hitz	Power Electronics, Applications, DC/DC Converters		
	Funda	mentals of Power Electronics		
		DI Dr. Markus Makoschitz		
		AIT Austrian Institute of Technology GmbH Center for Energy Giefinggasse 2, 1210 Vienna		
Si	Capacity building in Smart and Innovative eNERGY management	MAALO PUPH MAALO PUPH MUL Galway OE Gaillimh		
Fundamentals	of Power Electronics Pro	oject Sinergy (project-sinergy.org)		
Duration	240 minutes			
Prerequisites	Basics on electric engin	eering		
Software	Power Point, Repaper,	Plexim - Plecs Software		
Summary	In this lecture, participa electronic converters. A electronics in our mode running national and in discussed.	ants were introduced into state-of-the-art DC/DC power A general overview highlighted the relevance of power ern society. Furthermore, upcoming challenges based on nternational funded projects and roadmaps have been		
	Additionally, most relev 100% renewables (#mi impact on power elect electricity map (both or	vant power electronics applications, the Austrian road to ssion2030) and the current situation in Austria and the cronics has been reviewed based on APG data and an nline accessible).		
	In the second part of t architectures and oper fundamental converter	the lecture, an in-depth evaluation of DC/DC converter rating modes as well as mathematical tools to derive parameters was covered.		
Reference Mate	erial			

 Presentation: "SINERGY Presentation_PEFundamentals.pptx" or "SINERGY Presentation_PEFundamentals.pptx.pdf"

Delivered by: Markus Makoschit			Karana			
Markus Makoschit			Keywords			
	tz		Power Electronics, A	pplications, D	C/DC Converte	rs
File Edit View Call Window Help			GoTo		-	o ×
			Everyone ~		<u>گ</u> ۳ Q 7 4	÷
VJ 🖉 Valentina Janev 🖉	MP Marija Popovic (IMP)	MJ 🖉 Marko Jelić (PUPI	FS	DP 🖉 Dusan Popadic (IMP)	MB 🏄 Marko Batic (IMP)	(→ ∦ Lı
Rcord Read		Cocal Grids Combination of different generator loads and storage systems) Nanogrids (Combination of different generator loads and storage systems typ. < 6kW EES - Power Electronics Section	rs, rs, rs, rs, rs, rs, rs, rs,	Sinergy		- (C)

Figure 4. Example of online training with Markus Makoschitz

Duration	240 minutes
Prerequisites	Basics on electric engineering
Software	Power Point, Repaper, Plexim - Plecs Software
Summary	In this workshop, attendees will get initial insights in the PLECs power electronics simulation tool for modelling and simulating power electronics converters. Furthermore, knowledge on analysis and simulation from lecture 1 will be extended AC/DC multi-phase systems including also state-of-the-art three-phase power electronic circuits for renewable energy systems. Also, single phase AC/DC inverters for PV-applications will be discussed. Moreover, input and output filter design issues will be addressed. Again, participants get the chance to practice their skills and can work on selected design examples (AC/DC).
Reference Mate	erial
Present Present	ation: "SYNERGY Presentation_PEFundamentals.pptx" or "SYNERGY ation_PEFundamentals.pptx.pdf"

several years. The integration of these systems requires base functionalities which are discussed in this lecture. Due to the AC-nature of the electricity grid

the synchronization with the power system 50 Hz fundamental frequency is mandatory for single phase and 3-phase operation. Starting from this point the continuous operation by regulating the power delivery is discussed. Finally, various methods of islanding detection, the coordinated shut down during grid outage, as a safety function are presented. The course builds a foundation for subsequent lectures in the SINERGY project.

Reference Material

- "Grid Converters for Photovoltaic and Wind Power Systems"; R. Teodorescu, M. Liserre and P. Rodriguez, 2011, John Wiley & Sons, Ltd.; ISBN: 987-0-470-05751-3
- "Pulse Width Modulation for Power Converters, Principles and Practice"; D. G. Holmes and T. Lipo; 2003; IEEE Press, New York

5. Lecture Materials – Module "HIL-Simulation" (SGHS)

SGHS-01 - Real-time based HIL	Simulation for Electric Systems
Delivered by:	Keywords
Georg Lauss	Real-time simulation, HIL systems, electric power systems, advanced laboratory testing
Real-Simu	-time based HIL Jlation for Electric Systems
	Georg Lauss, EES, AIT
Capacity building in Smart and Innovative eNERGY management INERGY States of the state	NUI Gabray OE Gatimbi
Figure 6. Example	of online training with Georg Lauss
VJ N Marko Batic (M)	Borry and Control of All Contro
	eal-time based HIL mulation for Electric Systems
i i i i i i i i i i i i i i i i i i i	A CA C C C C C C C C C C C C C C C C C
P Type here to search O E 🖂 🗉 💼	10 0 4 10 10 10 10 10 10 10 10 10 10 10 10 10
Hardware-in-the-Loop (HIL) methods for Sinergy (project-sinergy.org)	or Power System Components (methods) Project

Duration	180 minutes
Prerequisites	Basics on electric engineering and simulation techniques
Software	None (applied software such as RT-Lab has been presented)
Summary Test/simulation approaches are expanded and optimized due to the la technologies such as real time systems, power electronics, analogous/ measurement devices. Novel simulation techniques gain increasing im in research and for manufacturers and for international standardisatio It is the intention of this course to create a detailed insight on real-tim simulation techniques, real-time simulation system topologies and the common application fields such as rapid prototyping and manufacturin standardized testing procedures, or establishing novel research areas electrical domain. Use cases for Controller Hardware-in-the Loop (CHI Power Hardware-in-the-Loop (PHIL) have been introduced, explained, results have been highlighted.	
Reference Mate	erial
 G. De Ca Simulat of Powe 	arne et al., "On Modeling Depths of Power Electronic Circuits for Real-Time ion — A Comparative Analysis for Power Systems," in IEEE Open Access Journal er and Energy, vol. 9, pp. 76-87, 2022, doi: 10.1109/OAJPE.2022.3148777.
G. Lauss Simulat on Pow 10.1109	s and K. Strunz, "Accurate and Stable Hardware-in-the-Loop (HIL) Real-Time ion of Integrated Power Electronics and Power Systems," in IEEE Transactions er Electronics, vol. 36, no. 9, pp. 10920-10932, Sept. 2021, doi: /TPEL.2020.3040071.
 C. Gavri "Asynch Grids," 2019, pj 	luta, G. Lauss, T. I. Strasser, J. Montoya, R. Brandl and P. Kotsampopoulos, pronous Integration of Real-Time Simulators for HIL-based Validation of Smart IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, p. 6425-6431, doi: 10.1109/IECON.2019.8927131.

SGHS-02 - Simulation and Modelling of Grid Power Converters		
Delivered by:		Keywords
Zoran Miletic; A	Anja Banjac	Power electronics, Photovoltaics, Converters
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>		<image/> <complex-block></complex-block>
Simulation and	modelling of Power Con	verters and Power Conversation Systems Project
Sinergy (project	t-sinergy.org)	
Duration	1 day	
Prerequisites	Control of grid power co	onverters for Photovoltaic applications
Software	Typhoon-HIL	
Summary	Starting with a recap of "Control of grid power converters for Photovoltaic applications" the course provides insight in real-time simulation of power converters and implementation of algorithms which have been discussed in theory. Topics covered are methods to develop grid synchronization algorithms based on phase locked loop (PLL) and frequency locked loop (FLL) methods with special treatment of DSOGI (double second order generalized integrator). Futher, typcial grid functions such as Volt-Var, Frequency-Var and Frequency- Watt are presented.	
	A methodological basis with AIT demonstrator electronics developmen detail for further use in	s for the lecture is use of hardware-in-the-loop systems hardware (AIT HIL Controller, and AIT Vindobona power nt kit). The development platform is also presented in subsequent courses and staff exchange.
Reference Mate	erial	

- https://www.ait.ac.at/fileadmin//mc/energy/Business_Cases/3_Power_System_Technol ogies/Smart_Grid_Converter_3.pdf
- "Grid Converters for Photovoltaic and Wind Power Systems"; R. Teodorescu, M. Liserre and P. Rodriguez, 2011, John Wiley & Sons, Ltd.; ISBN: 987-0-470-05751-3
- "Pulse Width Modulation for Power Converters, Principles and Practice"; D. G. Holmes and T. Lipo; 2003; IEEE Press, New York

SGHS-03 - Rapid Controls Development for the Grid Connected/Forming Power Converters

Delivered by:	Keywords
Zoran Miletic; Andres Tarraso-	Power electronics, Photovoltaics, Converters
Martinez	

Figure 7. Example of training with Zoran Miletic at IMP premises

Simulation and modelling of Power Converters and Power Conversation Systems Project		
<u>Sinergy (project-sinergy.org)</u>		
Duration	120 min	
Prerequisites	Control of grid power converters for Photovoltaic applications, Simulation and	
	modelling of Power Converters and Power Conversation Systems	
	modeling of Fower converters and Fower conversation systems	
Software	Typhoon-HIL	
Summary	This presentation is 3rd part of lectures on the Control of Grid Connected Power	
,	Converters with emphasis of actual implementation of the controls on AIT's	
	Rapid Controls Development Platform with live demonstrations on Typhoon C-	
	HIL Real Time simulator.	
Reference Mate	rial	
S. Bhat	tacharya et al., "Photovoltaic grid-forming control strategy investigation using	
hardware in the lean experiments " anthe Mediterranean Conference on Dewer		
naruware-in-the-loop experiments, 13th Mediterranean Conference on Power		
Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2022),		
Hybrid Conference, Valletta, Malta, 2022, pp. 420-424, doi: 10.1049/icp.2023.0029.		
Entry po	pint for HIL models and documentation: https://www.typhoon-hil.com/ait/	

6. Conclusion

Within the 30 months project duration 12 trainings have been organized by AIT for IMP staff in the field of Smart Grid Technologies. The progress can be considered in line with the project plan by flexible adaptation to changes in the pandemic situation although 4 further trainings are planned to be delivered towards the end of the project. One training (SmartEST Virtual Lab) was added to the list of planned trainings in addition to the proposal. This access in collaboration with the project "EriGRID 2.0" is available for all partners within Sinergy and the Sinergy target area of Serbia.

Though the early courses were held online in a webinar setting, the 2022 and 2023 meetings were located on site at AIT (March 2022) and IMP premises (March 2022, June 2022, November 2022, December 2022), as committed in V1 of this report (D3.1).